
—

*rj—A03e 667 STAWORD (k4Iv CALIF DEPT OF COMPUTER SCIENCE
—

~~ FF6 9/t
COIeI.EXITY RESLLTS FOR BANDWIDTH MINIMIZATIOtI.(U)

MCLASSIFIED
JAN ?? M R QA R E Y . R L GRAHAM, D S JOHNSON N000I4a?6 Ce0330

_ _ _ _

_ flu
_ _ _

1
~ • ~ DOI~ ~~~

II _______ ~ ~ IIIlI~

IIIII~*8
I .25 Uhll~ ~QQ ’•6

MICROCOPY RESOLUTION TEST CHART

~~~ N.~ ~~~~~~~ I”  A



T~

H ?
COMPLEX ITY RESULTS FOR BANDW IDTH MINIMIZATIO N

by

M. R. Carey, R. L Graham, D. S. Johnson, & D. E. Knuth

~~~~~ 

,

~

~
••-‘

:~~-~
- \~

‘,
‘

STAN-C S-77-587 \)\
JANUARY 1977

1. 1 COMPU T ER S C I E N C E D E PART MENT
School of Human it ies and Sciences

STANFORD UNIVERSITY

H
L~.Ju __I ,•.

~
‘

•1-~~~~___ .
~ ,•~~~~~

~ ~~~~~

II ~~~i ~~

4 ‘
f

i~

~~• • - ~~~~~~~~~~ ---
_ _ _ _ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

Unclassified
~~

(
SECURITY CLASS IFICATION OF THIS PAGE (W7,.n Dat* Entered)

D~~~~~(%~~ 1 I I&A~~kITA1’It ~kI DA f ~~~
READ INSTRUCTIONS

r~~~
j-1jr~ , ~~~~~~~~~~~~ I P ’. I IIJI” U ~~~~~~~ BEFORE COMP LETING FORM

1. REPORT NUMBER
-~ 2. GOVT ACCESSION NO. 3. RECIPiENT’S CATALOG NUMBER

‘L~f
STAN-CS-77-5~1j

4. TITLE (~~ d Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

COMPLEXITY RESULT S FOR BANDW IDTH MINIIVIIZATION1, technical, January 1977
- .~___ .. 6. PERFORMING ORG. REPORT NUMBER

-
.
~~~~~~~~~

— .-
~~~~~ 

.

STAN-CS-77-58 7 ~~~
7 AUTHOR (a) L s 4~—CQNTRAC’T OR GRANT NUMBER(.)

r ~~~r’I~ “ ~~P”~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~4~~OQ1
11.-76-C-O33O ;~~._4 R./Gare~~ .~~~~ L ./Graham, 7.~ S./Johnson

.
~~~ 

~~~~~~ ~~ F’ M’~ ~

.

~~ PERFORMING O R G A N I Z A T I O N NAME AND AD O~ ESS -. .- 4’, - - ‘ 10 . WOeRAM ... ,e~~rIStanford University - - ARE A & WORK UNIT NUMBERS

Computer Science Department ~~~~~~~~~~~

Stanford , Ca. 914.305
I I . CQJ~IT ROLL j NG OFF CE NAME AN O ADDRESS ‘~~~ 12 rI•refl’I_~ TB
Office ot Naval Research Jan~~~~Department of the Navy 13. NUMBER OF ~~~~~~~~~~~~~~~~~~~ . - .

Arlington, Va. 22217 36 -
—

-

14. MONIT ORING AGENCY NAME & AODRESS(If dif ferent from Controitin~ 0111cc) IS. SECURITY ~~~~~~~~C2L_thic
~~~~~~~~~~~ONE Representative : Philip Surra . .

Durand Aeronautics Bldg., Rm. 165 Unclassified
Stanford University 15a . DECL ASSI FICAT ION/  DOWNGRADING

Stanford , Ca. 911.305 SCHEDULE

1 6. DISTRIBUTION STATEMENT (of this Report)

Releasable without limitations on dissemination

DISTRIBUTION STATEMENT (of the abetract entered In Block 20, if different from Report)

18 . S U PP L E M E NT A R Y  NOTES

19. K E Y  WORDS (Continue on reve rse side if necessa~~ and idenlify by block n~~~b.r)

fr bandwidth , directed bandwidth, linear algorithm, NP-complete
P problems, optimum permutations, siphonophora

20. A B S T R A C T  (Continue on reverse aide if neceaaary and Identify by block number)

We present a linear-time algorithm for sparse symmetric matrices

which converts a matrix into pentadiagona]. form (“bandwIdth 2”) ,

whenever it is possible to do so using simultaneous row and column

permutations. On the other hand when an arbitary integer k and

DO ~~~ 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassfied O’f/J I?J)
S E C U R I T Y  C L A S S I F I CATION OF THIS PAGE (W~~Jn O~ f a Entered) $

~~~~~~~~~~~~ .——.—— 
——

~~~~~~~~~ 
.. .. — —

~~~


Unclassified

SECURITY CLASSI FICATION OF THIS PAGE(Wliw Date Hni.r.d.1

-
graph G are given, we show that it is NP-complete to determine

whether or not there exists an ordering of the vertices with

bandwidth < k , even when G is restricted to the class of free

tress with all vertices of degree < 3 . Related problems for

acyclic directed graphs (upper triangular matrices) are also discussed.

-t

C

£

—

a s

Unclassified

~ - - —
.

~~~~~~~~ 
-

~~~~~ 
- - - - - _________

~~~-~~~~~~~~~~----e-~~ ----- 

~~~

.

Complexity Results for Bandwidth Minimization

- - *-/ -~~~ - *1by Michael R. Garey,—’ Ron ald L. Graham,—’ David S. iohnsonj—’- - —--— -. - - -.

and Donald E. Knuth

Computer Science Department
Stanford University

Stanford, California 911.305

Abstract.

We present (linear-time algorithm for sparse sy~~ietric matrices
which converts a matrix into pentadiagona.l form (bandwidth 2),

I’ whenever it is possible to do so using simultaneous row and column

permutations~ On the other hand when an arbitrary integer K and

graph G are given, we show that it is NP-complete to determine

whether or not there exists an ordering of the vertices with

bandwidth < k , even when G is restricted to the class of free

trees with all vertices of degree < 3 . Related problems for acyclic

directed graphs (upper triangular matrices) are also discussed.

Keywords: bandwidth, directed bandwidth, linear algorfthni, NF-cornpletl-

problems, optimum permutations, siphonophora.

~TI$ Wafts
kIt

~ u~A U .’IC~~ fl
—•

*1—‘ Bell Telephone Laboratories, Murray Hill , New Jersey O797~ . li~

This research, performed in part while the first three authors were
visi t ing Stanford University , was supported by Nat ional science
Foundation grant MCS 72-03752 A03 and by the Office of Naval Research _________________

contract N000114-76-C-0330. Reproduction in whole or in part is
permitted for any purpose of the United States Government.

~

- -- .-

~

~~~ -- .- -~~~~ -
~~
.--.-. ..-~~ ~~~~~ .



~~~~~~~~~~~—i--

1. Introduction.

Let G be a graph on the set of vertices V , where ~~ =

-We -shall -~~ ite u — v if vertex u is adjacent to vertex v in G

arid u —4- v if they are not adjacent. A layout of G is a one-to-one

mapping f that takes V into the positive integers; equivalently, a

layout can be regarded as a string of vertices and. “blanks”, with each

vertex of V appearing exactly once, for instance b_ c
__

cia • The

• correspondence between these two definitions is simply that f(v) = k

if and only if v is the k-th element of the string; thus

b c _ da corresponds to f(a) = 7 , f(b) = 1 , f(c) = 3 , f(d) = 6 ,
where V = (a,b,c,d).

The bandwidth of a layout f is defined to be

bandwidth(f) = m ax [I ±~(u)-f(v)t: u — v)

the greatest distance between G-adjacerit vertices in the string corresponding

to f • The bandwidth of graph G is then

Bandwidth(G) = mintbandwidth(f): f is a layout of G)

It is clear that

Bandwidth(G) = max[Baridwidth(G’): G’ is a connected component of G}

for if f is any layout there is another layout f ’ , having the same

bandwidth, in which the connected component s of G appear “unmixed” as

substrings. (We can let f ’ (v) = f (v) -4- N c(v) , for example, where c (v)

is the number of the component containing v , and where N is sufficiently

large.)

Perhaps the most important application of the bandwidth notion arises

in connection with sparse matrices. Given a sparse n x n matrix

A = (a1~) , let G be the graph on vertices ~~~~~~~~~~ where v
~

— v .

for i ~
j if and only if

~~~ ~ 
0 or a.. ~ 0 • Then Bandwidth(G) < K

if and only if there is a permutation matrix P such that all elements
of P AP lie on the diagonal or on one of the first K superdiagona.ls

or the first k subdiagonals. This is easily proved by observing that

blanks may be removed frc~n a layout without increasing the bandwidth. 

2 

-~~~



-—.—~~~~~~~~~~~~~
. -

~~ ~~~~~~~~~~
,

When G has no edges, its bandwidth is trivially -~~~ .

Otherwise the bandwidth will be as low as 1 if and only if each component

of G is an isolated point or a ~~~ namely a subgraph of the form
v1 

— v2 
— ... — v~ where v~ — V

j 
iff li-i L = 1 • It is easy to

determine whether or not Bandwidth(G) = 1 , even -when G is not 1~~own

to be connected, in linear time; in other words, there is an algorithm

which decides in 0(n) steps whether or not a sparse matrix can be

converted into tridiagonal form by simultaneous row and column permutations.

(See [13].) The simplicity of this algorithm suggests naturally

that the next harder case might not be too difficult, and indeed we shall

see below that the condition Baridwidth(G) = 2 can be tested in linear

time. However, the algorithm which achieves this is quite intricate,

and there appears to be no elegant way to characterize graphs of

bandwidth 2

The authors have been unable to construct a polynomial-time algorithm

that decides whether or not Bandwidth(G) = 3 • The bandwidth 2 case

indicates some of the difficulties which must be surmounted . Section 8

r below shows that the general problem of deciding whether or not

Bandwidth(G) < K , given K , is NP-complete, even if G is a free tree

with all vertices of degree -( 3 . This restriction to trees is of special

interest because the analogous problem of minimizing ~iI ~f(u) - f(v) instead

of maxlf(u) - 
~

(
~)l over all layouts can be done in polynomial time when the

graph is a free tree [31], yet it is NP-complete for general graphs [17].

Section 9 considers the analogous problems which arise when acyclic
directed graphs replace undirected graphs. Several open problems conclude

the paper.

r 

~~~ . ... . .- ±-~ .....~~~~~~~~~ ~~- .- . 


2. PreliminarIes for the Algorithm.

In this section we shall begin to develop an algorithm that tests

whether or not Bandwidth(G) = 2 • We shall assume that G is connected.

and that it has at least one vertex of degree > 3 . (If all vertices

are of degree < 2 , it is easy to see that Bandwid.th(G) < 2 , since such
a graph is e collection of isolated points, paths, and. cycles.) The

connectedness assumption implies that G has at least n-i edges, and

on the other h~~d we may assume that G has at most 2n-3 edges since

a graph of bandwidth K cannot have more than (n-l) + (n-2) + ... + (n-k)

pairs of adjacent vertices. Therefore our algorithm will take 0(n)

steps if its running time is bounded by a constant times the number of

edges in G

[ci order to get into the right frame of mind for this problem, the

reader is urged to try his or her hand at finding a bandwidth-2 layout

for the graph in Figure 1. Like all graphs of bandwidth 2, this one is

rather “skinny”; a breadth-first search will not involve many unexplored
nodes at any time. The puzzle which the reader is now asked to try is

simply this: Arrange the 27 vertices of Figure 1 into a straight line

so that all pairs of vertices which are directly linked in that graph are

separated by at most one other vertex in the line. (This puzzle is not

quite so easy as it looks. The algorithm we shall develop is supposed

to work in linear time, essentially without backing up, but no such

restriction is being imposed on the reader.)

A — B G — H N ~ T — U — V - — - W

I I I I I I I
C— E— F I M P S X — Y

I I I I
D J-~~~K~~~~ L — 0 — R Z &

4

Figure 1. Example of a graph which the reader is urged to arrange

into a bandwidth-2 layout before proceeding further.

-

~

-- - . — ~~~~~~~~~~~ - - - -~~~~~~~
___ ~~

___ _ _ i_~ _ _ ~ _
— _ _ _

—
-- -

Perhaps the most important notion which arises in connection with

graphs of bandwidth 2 is the concept of chains within G • We say

that v begins a chain of length K if there are vertices v =

such that

v1
— V

2
— ... — vk

in G , and. each of v1, . . ., V~~~~1
has degree 2 ; furthermore vk must

be of degree 1 , an endpoint .

Let us define £(v) = 1 if ieg(v) = 1 , arid !(v) = k+i if

d.eg(v) 2 and v — w where 1(w) = K ; otherwise 1(v) = ~ . This

function is well-defined since Bandwid.th(G) > 1 ; and it is clearly

possible to compute ~ (v) , for all v , in 0(n) st ~js. T}ccrelure

our algorithm -will assume that this precomputation has been carri ed, out.

The values of £ for the example graph in Figure 1 are shown in

Figure 2. Note that vertex v is part of a chain if and only if i (v) <

~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 1 1 ~~—~o— 2—l

i — c t — i  A ~ I ~~N_~_L!J N
Figure 2. The I function for the example graph in Figure 1;

there are three chains of length 2.

We shall say that a layout f is chain-stretched if l 1(v ± ) -f(v~+1) l  = 2

whenever v~ and v~~1 are consecutive vertices of a chain. This

• tercninolo~ r is justified because of the following observation.

Lemma. Every graph of bandwidth <2 has a chain-stretched layout of

bandwidth < 2 .

Proof. Let f be a layout for the graph G , where Band.width(G) < 2

we may assume that G is connected. Furthermore we shall choose f to

have the maximum “range span ” over all bandwidth-2 layouts for 0 ; i.e., 

-.
~~
. . .--.-. ,-- . -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ .. 



~~~T T~~~~~~~~~ T I~~~~ ‘~~~~~T~ 

max f (v)  - cain f (v )  is to be maximum over all 1’ withv€V veV
bandwidth(f) < 2 . (The maximum range span is finite, at most 2n-2 ,

since 0 is connected. ) We shall prove that f is chain-stretched..

If not, the string p corresponding to f contains the sub string

uv , where u and v are consecutive vertices of a chain. By definition,

deg(u) and deg(v) are at most 2 , and u — v , hence u and. v are

each adjacent to at most one other vertex. By maximality of f ‘ s range

span, the strings obtained from p by replacing uv by u v  and v u

are not layout s of bandwidth < 2 • It follows that p contains the

substring uvab or abuv , where a — u — v — b ; by left-right

synmetry we may assume that p contains abuv • Then v must be the

rightmost nonbiank element of p . If 1(u) > ~(v) = k , graph G

contains the chain — Vk l  
— • . .  — v1 where v = V

k 
and b = Vk l

but then p must end with v1u2 
... u

~~l
Vk.luk

Vk and it can be

le~~-thened by replacing this substring by U
2~~

..Ukl
U
~K

V
k
Vk l~~~

.V
l

On the other hand if 1(v) > 1(u) = k , a similar argument shows that

~p ends with u1v1u2 ... Uk lVk lU1,~
Vk where u = uk and a = u,~~1 , and.

this substring can be replaced by Vl
... V

k
Uk_ u

~~~l
... U

l
. In both

cases the maximality of range span has been contradicted. J

The algorithm we shall develop below is based on a subalgori1~hm

which solves the following problem: “Given a connected graph C and two

vertices a and b , decide whether or not there exists a layout I ol

bandwidth < 2 such that f(a) = 1 and f(b) = 2 .“ If such a layout

beginning with ab exists, the algorithm will construct one; and in all

cases the algorithm will terminate after 0(n) steps. The idea is to

build the layout step by step, working with partial layouts, namely with

one-to-one functions f that are defined only on a subset of the vertices.

L All partial layouts we shall deal with will satisfy the bandwidth 2

condition, in the sense that lf(u) - f (v)j < 2 whenever f(u) , f (v) are

both defined and u — V • Furthermore we know by the lemma that it
suffices to restrict attention to chain-stretched partial layouts.

6
-

~~

..-~~~~~~~ -- ,- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

—

If f is a partial layout defined on the set of vertices U

the active vertices of f are those elements ucU such that u — v

for some v,~U . If f1 is a partial layout defined on V1 and f
2

is a partial layout defined on V2 ~ V1 , we say that f2 is an extension

of f1 if f
2(v) = f1(v) for all vcV1 . We also say that f2 is a

complete layout if V2 = V and. bandwidth(f2) <2 • Thus the task of our

subalgorithm will be to decide whether or not the partial layout f

def ined by the string ab (i. e ., f (a) = 1 and f(b) = 2) can be

extended to a complete layout .

The subalgorithm actually does more , since its initial task leads

to a family of similar subtasks of three types:

Type A. Given a partial layout defined by the string a ab , where at

most a and b are active, can it be extended to a

complete layout?

Type 13. Given two partial layouts defined by the strings

aa~ b ... a1b1 and crba ...b1a1 ,
for some in > 1 ,

where at most a1 and b1 are act ive, can at least one
of these be extended to a complete layout?

Type C. Given a part ial layout defined by the string q = aam .
-

for some is > 1 , where at most a1 is active, can it

be extended to a complete layout?

In each case a is a (possibly empty) initial string which has no important

influence on the algorithm, since it represents inactive vertices and blanks

that have already been permanently placed. The string ~x in tasks of Type C

k; will have length -
> 2 , and it final two elements will be nonblank. The two

strings in tasks of Type B will be denoted by cp
~
x(ambm) ... (a1b1)

The idea of the sub eigorithm is quite simp le , namely to “keep doing

something useful.” Let I be a partial layout of one of the three t~~. ’. s,

defined on the vertices U . (Actually f represents two partial

£ layout s if it is of Type B, but it will be convenient to iguore this

fine distinction in our informal discussion.) By looking at how the

active vertices of f interact with vertices ~ U, it may be obvious

that f cannot be completed. Otherwise the subalgorithm will find a

sufficiently general extension of f , namely an extension layout f’

~~~~~~ --



r~~- TIIT TII~ ________  

— --
~~~~--. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

which can be completed whenever f can be; and f’ will have one of the

three basic types. If any suitable extension is found, the string p

corresponding to f will be replaced by the string p ’ corresponding

to I’ , and the proces s will continue until either reaching an impasse
or a complete layout. The running time for each extension step will be

bounded, except in one case where the running time can be “ charged” to
-

subsequent extension steps; hence the total time will be 0(n)
In Section 7 we shall show how the subalgorithni can be used to

construct an algorithm that solves the general bandwidth 2 problem

(without any given partial layout), in linear time.

I—

-
H

3 -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



• -— —~~ 
, . - 

- 
~~~~~ r-~---w .- ~~~~~~~~~~~~

3. The Subalgorithin for Types A and B.

We shall present the subalgorithin informally, with proofs of the

validity of each extension intermixed with specifications of the actual

operations to be carried out. The actions will be of three kinds:

(a) Terminate successfully because p is complete; (b) terminate

unsuccessfully because p cannot be completed; (c) set ip ’ to a
sufficiently general extension of p . It is hoped. that this manner of

•
presenting the procedure will make it easy to understand and reasonably

enjoyable to read. Examples of the sub algorithm in operation appear in

Section 6 below.
The following notation will be used for convenience:

U = set of vertices appearing in p = domain of current

partial layout I

2(u) = u — y and v~UJ “successors’ ci’ vertex u

n(u) = ~S(u)~ = number of “successors” of u

i(u) = chain level of u (defined earlier).

It is clearly possible to build. and maintain data structures so

that references to 2(u) , n(u) , 1(u) take a bounded amount of time.

The subalgorithm consists of a long but exhaustive list of cases covering

which actions are appropriate under various circumstances that can arise.

L First let us consider Type A, recalling that tasks of this type are

specified by the string p = aab , where at most a and b are active.

Case Al, n(a) > 1 or n(b) > 2 . Failure.

Case P2, n(a) = 1 • Set cp ’ = aabc where 2(a) =

Case A3, n(a) = 0 , n(b) = 2 . Set p ’ = aab (cd) where ~.(b) = {c,d~ .

Case A~, n(a) = 0 , n(b) = 1 . Set p ’ = aab c where C(b) = (c}

Case P,.5, n(a) = 0 , n(b) = 0 • Success.

Note that Cases p2, A3, A14 lead. to new probl~ns of Type A, B, C respectively;
the proofs of validity in each case are trivial.

-
9

--— - - - — — --~~
‘•

~~~~
—- — - , - - - .  S —~~~~~~ -—- —----



_ _ _  T~~~~~~

:‘ 
~

Recall that tasks of Type B are specified by the string

p = a ( a b )  •.. (a1b~) , for some m > 1 , where at most a1 and

are active. Actually cp represents a potential choice between two

partial layouts, aambm ... a1b1 and abmam ... b1a1 • For convenience

we shall write a = a1 , b = b1 ; we may assume by symmetry that

n(a) < n(b)

Case 31, ~(a)U S(b)i! >2 or n(a) = n(b) = 2 . Failure.

Case B2. n(a) = 1 , n(b) = 2 • Set p ’ = aab ...
where 2(a) = ~c} and S(b) = [c,d}

Case B3. n(a) = 0 , n(b) = 2 . Set cp ’ = aa
~
b • . .  a1

b
1(cd)

where 3(b) [c,d~

Case 311-. n(a) = 1 , n(b) = 1 , S(a) = S(b) . Set 
~
p ’ = 

~~~~~~~~ 
a1
b
1
c

where 3(a) [c3 .

Case 135. n(a) = 1 , n(b) = 1 , S(a) ~ s(b) . Set

p ’ = a(a
~
b
~~

• . . (a1b1~(cd~ where S(a) = [c) , s(b) = [d)

Case B(. n(a) 0 , n(b) = 1 • Set p ’ =
~~~~~~~~ 

a1b1 c where

S(a) [c)

Case 37. n(a) = 0 , n(b) = 0 • Success.

Again the proofs in each case are trivial; we shall discuss only case 136

here : Any completion of p must be of the forms aam
bm ... a~b~xcw

(wh ere x is a vertex or a blank), aambm ... a1b1cw , or

ab
~
a
~~
...b1a1cw . The first of these is an extension of p ’ ; and the

second or third imply that ~~~~~~~~ a1
b1

cw is also a complete

• extension.

- - ,  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~- • - - --~~~~--



ii. The Subalgorithin for Type C.

Recall that tasks of Type C are specified by the string p = 
~ 
am... a1

for some in > 1 , where at most a1 is active and a contains no usable

blanks . This type of partial layout allows considerably more flexibility

than Types A and B do, since it may be possible to make good. use of the

m blanks . Let us write a as a shorthand for a1 - Furthermore we

shall write U’ = UUS(a) , with S’(u) and n’(u) defined. correspondingly.

Case Cl, n(a) > 3 . Failure.

Case C2, 3(a) = [b,c,d}

In this case the final nei~~ borhood of a in a complete extension must be

bacd , badc , cabd , cadb , dabc , or dacb ; the possibilities can b€

narrowed down by considering various subcases, Symmetry between b , c , d

is used in order to reduce the number of r~os~ib:~1ities; in other words, th re

is always a way to rename the elements of ~(a) so that some suhcase

applies. We shall say that a vertex u in S(a) is feasible if it can

conceivably fit to the left of a1 ; thus u is feasible if 5’ (u) = [vj

where 2(v) < i n , or if n’(u) = 0 • In the former case we say that u

is 1(v) -feasible; in the latter case we say that u is 0-feasible.

Case C2.l, b — c , b — d , c — d • Failure.

Case C2.2, b -4— c , b ----- d , c — d .

-

‘ 
In this case we must decide between bade and cadb

Case C2.2.l, neither b nor c is feasible. Failure.

Case C2.2.2, b is feasible but not c • Set p’ = a[ba]dc

‘ 1 - Here and in the sequel we shall use the following notation :

[ba] = _ am..._ak+2bkak+l...boal if b = b0 is k-feasible and

b1 
— ... — bk is the corresponding chain of length k • In other words,

[ba] stands for the string a
~... a1 with b and its successors

inserted into the appropriate blank spaces.

Case C2.2.3 , b is k- feasible and c is f-feasible

where k £ • Set p ’ = a[bajdc

U 

-~~~~~~~ -- • - - -• --- -- ~~-- —-~~~~~~~~~~~~~~~~ •- • - - , - • - - -~~~~~~~--



_ _ _  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To justify this step, we shall prove that

a{ba]dc > a[ca]db ,

where we say that partial layout p1 dominates p2 (written p1 > p2

if every completion of p2 implies the existence of a completion of p
1

In our case any chain-stretched completion of p which is not an

extension of p ’ must be an extension of a{ca]db , so it must have

the form p” = a[ca]d0b0d1b1 ... d.~b~ w . Let c0
— C

1
— • . . — C

1

-
• be the chain adjacent to c = C0 and let c~ be blank if £ < ~ < k

Then we m~y interchange C0~~•~~
Ck with bO,.. ., bk in p ” , obtaining

a valid, completion of p which extends cp ’

It is important that the reader understand the justification of

step C2.2.3 at this point before proceeding further. Although the

argument is very sini,ple, we shall be using it repeatedily in the sequel ,

with various refinements and extensions as the cases get more complex.

Case C2.3, b — c , b -#- d., c±d

In this case we must decide between bacd , cabd , d.abc , and. dacb

Case C2.3.1, neither b nor c is feasible. Failure, unless

‘1 is feasible. In the latter case, set

= a(da] ’(bc)

Case C2.3.2, b is feasible but not c ; say b is k-feasible.

If d is 2-feasible where I > k , set p ’ = a[d.a]bc

otherwise set p ’ = a[ba]cd. .

To justify this step, note that a[ba]cd is forced unless d is feasible.

In the latter case a[da}cb cannot be better than a[da]bc , since

b = b0 must be followed by b1, . . . , b~ , with b1÷1 following two

positions after b. ; it is easy to see that any ~omp1etion of a[da]cb

can be converted into one which extends a[d.a]bc . Thus we must simply

distinguish between bacd and dabc , and the argument is similar to

Case C2.2.3.

- - - •-
~~

- - -
- —

-
•

~~~~~~~~~~~~~~~~~~~~~~

-- - --- -- -

~~~~~~~~~~~~~~~~~~~~~
-
~~~~~~~

- —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Case C2.3.3, b is k-feasible arid. c is 2-feasible, where

k > I • Set p’ = a[ba]cd

The argument is like Case 2.2 .3 again; if d is feasible too, we will

soon be successful, regardless of which alternative is chosen .

• Case C2.l~, b +c , b ±d , C± d..

AU six possibilities of Case C2 still remain, but we can make use of

the symmetry.

Case C2. 1i~.l, none of b , c , d is feasible. Failur e.

Case C2. 1~.2, b is feasible but c arid d are not. Set

p ’ a[ba] Kcd.)

Case C2.1~.3, b is k-feasible and c is 2-feasible, where 2 < k

but d is infeasible. Set p’ = a[ba~lcd.

In this case a[ba]cd > a[baldc and cz[ca]bd > a[caldb as in Case C2.3.2,

while a[ba]cd > a[ca]bd. as in Case 2.2.3.

Case C2.1~-.11-, all of b , c , d are feasible. Set p’ = a[ba]cd.

Success is imminent.

Case C3, S(a) = tb , cJ . See Section 5.

This is by far the hardest case to handle, and we shall postpone it for

a moment since the remaining cases are very simple.

Case Cli., 2 (a) = ~b} . Set p’ = aa~...a-~~b

This clearly dominates ~~~~~~~~~~~~ and aa~..~~ a1
b

Case CS, n(a) = 0 • Success.

~~~



r ~~~~~~~~~~~~~~ 

‘

~~~~~~~~~~~~ _____ i~ I~~T~~ 
..

~~~~

5. The Subalgorithm for Type C, Case C3.

Now we must face up to Case C3; as above we have p =

and a = a1 and 3(a) = [b,c}  . We should replace the substring a at

the right of p by either abc , acb , bac , bac , cab , or ca _ b

where the dashes may or may not get filled in later. Fortunately we can

rule out two of these possibilities immediately, since bac is never better

• than _abc and cab is (similarly) never better than _acb : The complete

layout a[ba]ew which extei~ s bac can always be converted to a complete

layout a[b1a]bcw which extends _abc

Case C3.l, b — c

In this case we have to distinguish between abc and acb . Let us say

that b is k-lucky if S’(b) contains a vertex b1 with 2(b1) = k and.

k < m • (If there are two or more such vertices b1 , 
choose one with

maximum k .) Similarly c might be lucky; we can use the blanks left

of a for one of the successors of a lucky vertex.

Case C3.l.l, neither b nor c is lucky. Set p ’ a a
m...a1(bc)

Case C3.1.2, b is k-lucky and c is either (i) unlucky or

(ii) 1-lucky where I < k , or (ii i)  k-lucky and

n’ (b) < n’ (c) . Set p ’ = a[b 1a]b c

To justify this step, we first argue (as in Case C2.2.3) that the layout

a_ a~ ...a1bcb1 has no advantage over p ’ . Therefore the only competing

possibility is a a~... a1cb . By considering the two ways to place b1
in the latter string, we have two possible types of completion to consider,

H say p” = a[claj cbxlbl...xkbkw and p” = a[cla}cbblxl...xk lbkw , since

has degree < 2 and is part of a stretched chain. (Here c1 is blank

if c is unlucky or if we do not choose to make use of c ‘s luckiness.)

We can always replace p” by a[blaj bcx lcl...xkckw , an extension of p ’

similarly, p” can always be replaced by a[b1a]bcx1c1. . . X k_ l C
k ...l

W

unless c is k-lucky. But in the latter case we have n ’ (b) < n ’ (c) = 1

ç i~ 
• 

by hypothesis, so the x.  are all blank and w is empty; p”’ can

therefore be replaced by a[bla]bc_ cl... ck

111

L~ 
•

~~

- -



Case C3.2, b + C and n ’( b )  > 3  . Failure.

Case C3.3, b -I-- c and n’(b) = 3 . If s’ (b)flS’(c) = [d) and

either S’ (c) (d) or s’ (c) = [c1,d) where 1(c1) ~
z m

set p ’ = a[call db . If S’(b) flS’(c) = ~ and either

= or S’(c) ~ [c1) where 1(c1) < in , set

p ’ = a[ca]b . Otherwise failure.

Case C3.li , b 4- c and max(n’(b),n’(c)) = 2

Case C3.1i..l, S’(b) = S’(c) . Failure.

Case C3.~~.2, 3’(b)flS’(c) [d} . If n ’(b) = 2 , let

S’(b) = [b1,d) ; if n’(c) = 2 let S’(c) = [c1,dj

- 

- In this case we say that b is k-lucky if 1(b 1) = k and k < in

b is 0-lucky if n’(b) = 1 ; otherwise b is unlucky. Similarly c can

be lucky or unlucky. There are four viable alternatives to decide between,

n~nely a[ba)dc , a[b1a}bcd , a[ea]db , and a[c1
a]cbd

Case C3.4.2.1, neither b nor c is lucky. Failure.

Case C3.14.2.2, b is k-lucky and c is unlucky. If k = m , set

p ’ = a[b~a}bcd . Otherwise set

p ’ = a am... ak+2 Kh kak÷l ) . . .( b al) (dc)

This -is the neatest part of the entire algorithm, since the two viable

alternatives a[ba]dc and a[b1
a]bcd turn out to be essentially a

Type B situation. (On the other hand it may also be considered the

sloppiest part of the algorithm, since an abuse of notation is involved

here: If the Type B specification is ultimately completed to a str ing

of the form aa
~
...a

~+2
ak+lbk...albcd~ , a blank should actually be

inserted just before ak+l .)

Case C3.li~.2.3, b is k-lucky and c is 1-lucky, where k >  £

Set p’ = a[b1a]bcd

It is easy to check that p ’ dominates the other three alternat,ves,
• using arguments like those in Section ii. 

- - 
_ __1__ __

~~ _•_ _



Case C3. 1i..3. $ t ( b ) f l 5 t (c)  = ~ and n ’(b ) = n ’(c) = 2 . L~t

S’(b) = [b1~b~) and S’(c) = [c1,
c~) , where

1(b1) < i(bj ) and 1(d ) <

The only possibilities are Ct[ba}b~cc1
c~ and. a[ca]c~bb1

b~ , perhaps

interchanging b1 with b~ and/or c1 with Cj

Case C3 .li. .3. l, 1(b 1) > m . If 2(c1) > in , failure; otherwise if

— 1(c~) >m , set p’ = a[ca}c~b ; otherwise set

p t 
= a[c ’a]c1b , where “ [c ’ a] “ means that the

blanks are to be filled by c and the chain

containing cj

These actions are forced unless 1(c1) = 1(c~ ) = 1 , for if C
1 

and c~
both have finite level we must have 1(c1) = 1 or failure will be imminent.

Case C3.4.3.2, 2(b1) < in <z 1(bj) , 1(c1) < m < i(c~ ) , and.

n’ (bk) < n’ (ci) . If 3t (bk) ~ [ci) , failure;
-
• otherwise set p ’ = a[ba]b~c

In this case it is impossible to complete p with a{baIIb~cc1c~ , since

1(b~ ) > 1 ; the only viable alternatives are a[baJb~cc~c1 and a[ca]c~bb~b1
and we must have b~ 

— cj, . Now if S’(c~ ) ~ (b~ } , the stated value of p t

is forced, otherwise success is imminent.

Case C3. l4 .3 .5 ,  2(h 1) < m ~ 1(b~) and 1(c~) 
-
~-. m • ;ct p ’ = ak-’a]c

1
b

This is essentially forced, since a[ba}b~c(c1
c~) implies £(b~ ) = 1

when c1 and have finite level.

j - Case 
~~~~~~~~ I(b~) < m , i(c~) <m , and 1(b1) 2(c1) . Set

p ’ = a[b’a]b1c

As in Case C3.14.3.l we see that failure will occur unless t (b 1) = 1

Case C3.1i..14. st (b)fls~ (c) = 0 , n’(b) = 2 , and n’(c) < 1 • Let

S’(b) = [b1,b~~1 , where 1(b1) ~-. ~(b~~) ; and if

n’(c) = 1 , let S’(c) = [c1) , otherwise let

be blank and z (c 1) = 0 •

~~ --~ —-~~

T Z ~~~~~~~~~~~~~~~
~ TT ‘

~~~~~~~~~~
-

~~
—-

~~~~~~ ‘~~~TT~~

There are many possible arrangements to choose from, and the subc aces
require careful analys~ s.

Case C3.4.)
~.I, /(b1) > in . If £(c1) > in , set p ’ = a am... a2cac1b

If 1(c1) = in , set p ’ = a[c1aj cb . Otherwise set

p ’ = a[cal b

Case C3. 1i..li..2, 1(b
1

) < m , 2(c1) < in . If 1(c1) = in or £(b ~) < ~
set p ’ = a[c1a]cb * Otherwise if 1(c1) < 1(b1)-2
set p ’ = a[b1aj bc ; otherwise set p ’ = a[ca}b1b

If f(b~) < ~ , success is imminent, so we may assume that I (b~~) =

Then a[b1aJbcb~ > a[ba]b~ c ; and a[ca} b > a[c1a}cb > a a . . . a2cac1b
unless 2(c 1) = in when a[ca} _b is inappli cable. If 1(c 1) = in , it is

clear that a[c1ajcb a[b1a]bcb~ ; otherwise we need to compare

a[b1a]bcb~ with a[ca] b , and the best place for b1 in the latter

string is a[ca}b1b b ~ . The stretched chains in these two alternatives
now fill respectively 1(c1) and 1(b1)—2 positions to the right of b~
and it is best to minimize this quantity.

Case C3. ll. li..3, 1(b1) < m and 1(c 1) > in . If 2(b
1
) = m , set

p ’ = a[b1a]bcb~c1 . Otherwise if 1(b~) = in , set

P
r = a[b~ a}bcb1c1 . Otherwise if 1(b~) < in , set

p ’ = a[b ’ a]b1c . Otherwise let k = 1(b
1

) ; set

P
t

= a ak... a~K÷2 (bkaJc÷l) • . .(bla2~~(~ al)~ hlc)

As in Case C3.~~.2.2, this is a slight abuse of notatian.

Case ~~~~~~~ S’(b)fl~~’(c) = , max (n’(b),n’(c)) 1 . If

ri ’(b) = 1 , let St (b) = [b1)
; otherwise let b

1
be blank and. set 1(b 1) = 0 • Define c

1 similarly.

Case c3.1~.5.1, 1(b 1) < m and 1(c 1) < m • Set rp ’ = pbc

Success is imminent.

Case C3.h.5.2, 1(b
1

) < in and 1(c 1) > m . if 1(b
1) = in , set

p t = a[b1a]b c , otherwi se set p ’ = ~x [ba) c

17


~~~~~~~~~

---

~~~~~~~~~~

- -- _-

~

-- -—
_ _ _ _ _

____ .-
~~~~~~~~

..
~~~~

---- --— -- -

~~~~~ 

—- -

~~~~

~

-

~~~~~~~~~
•
~~~~

-- --,.-
~

—

Case C5. I4 .5.~ , 1(b 1
) ‘ in and 1(c 1) > in

In this final case we must “look ahead” before deciding what to do.

• For k > 1 if bk has degree 2 , let bk+l be the

vertex adjacent to bk which has not yet been given

a name; continue until having found the sequence

b — b1
— ... — b

k
where d.eg(b~) ~ 2 . Similarly,

find the sequence c — c1
— ... — c1 where

deg(c 1)~~~ 2

(This process must terminate, since G is not a cycle.)

• Case C3.~~.5.3.1, b
k = = a or deg(b~~) = deg(c 1) . Set

p ’ rp t)c

Success is iimninent.

Case C3.14.5.3.2, deg(b~) = 1 and deg(c 1) > 2 . Set

p ’ = ~z a •.. a. b ab c
-m - .~ 1

Case C3.~~.5.3.3, deg(b~) > 2 , deg(c 1) > 2 , and k < £

In this case we must decide between four alternatives abcblcl...bk l Ck l bk
acbclbl...ck lbkl ck , bablcb2cl...bkck l , and cacl

bc2
b
l•..ckbk l

by acquiring a little more information about bk ,
c
1 ,

k , an d £ it will

become clear which of these dominates:

Case ~~~~~~~~~ bk = c 1 . If k = 1 , set p ’ = rpbcb 1c1
otherwise set p ’ ~xa .. . a

2
ca
i
s
1b

Case C3.~ .5.3.3.2, bk
— c 1 . If k = 1 , set p ’ = p(bc)~b1

c
1)

otherwise set p ’ = a a ... a2 (ac) Kb c 1)
— m —

• Case 3.~ .5. ’.3.3, b~~ ~~ c 2 , b
k

••1•~
C

1
. Failure.

Note that the “lookahead time ” required to find k and 1 in Case C3.I4.5.~
is O (k+1) , not 0(1) ; but Case C3.14•5.3 cannot occur again unti l

-

-

bl,...,bk l , cl,..., c , l have all been Included in the string p • Thus

• the lookahead time can be distributed among the subsequent ste1 s , and the

subalgorithin run s in linear time .

We have now exhausted all possible cases, and the cubalgorithm i s cuml lt t - .

IiIi~~
_

~E~~~ ~~TTT~~

6. Examples.

Here is how the suba.lgoritbxn would proceed to search for a layout

for the graph of Figure 1, beginning with DC

Case p

DC(AE)

A DCAEBF

Bi DCAEBF (GJ)
• Failure.

On the other hand, if we begin with DA , the algorithm succeeds :

DA
DAC
DACB
DACBE

C3. .1(1) DACBEGFHJ
DACBEGFHJI
DACBEGFHJIK

A-~ - DACBEGFHJIK LC3.4. 14 . l (i i) DACBEGFHJIK~I2~1O
A3 DACBEGFHJ I}S~II~~O(PR)
B5 DACBEGFHJIKNLM0(PR~ (QS)

DACBEGFHJDC-TLMOPRQS T

c l’ DACBEGFHJI}O~LMOFRQ$ T U
B2

~~~~~ DACBEGFHJI}c~LM0PRQ~SWTVU(XY~DACBEGF JIKNU~0PRQ$WTVUYX&Z
Success.

Here is how the algorithm would construct the sam e solution

“backwards”, starting with Z~

z&xY
• A z&xYU

Z&XYU<TV)
Z&XYU(TV)(SW )

4 Z&XYUVTWS R

C3 4 4 2( ii i )  7&XYUVTWSTh O
Z&XYUVTWSQ.RPOML
Z&XYUVTWSQRPOMLN

A4 Z&XYUVTWSQRPOIVINK
r’-z 4 4 \ Z&XY WSQ~POMLNK J

A 
• ‘

~~~~
‘

~~~~~~~~~~~~~~~~~~~
Z&XY WSQ~POM WKIJHFG
Z~XY TWSQ~PO?.1NKI~fliFGE
Z&XYUVTWSQ~POMLNKI JHFGE(BC)

Ac Z&XY WSQRPOMLNKIJ1~FGEBCAD
Success.



- __________ ______________________ _______________________ ____________

If the algorithm had chosen the somewhat tempting alternative

2&XYUVTWSNBI4OLPK at step C3 .4. 4.2 in this example, failure would have

followed soon after.

Suppose Figure 1 were changed so that F — J became F — * J

Then the algorithm would invoke further cases:

4 - \ Z&XY TWSQRPOM[~NK J
C3. .5.3.3. ~ii j

- z&xY1JVTWSQ~PO~1NKIJII*GF

C~ 4 2 ~ 
Z Y S Q ~PO~~~~~~~*GF E

A5 
Z&XYUVTWSQ.RPOMLNKIJH*GFDECBA
Success.

20 

—••-- -.• - — .•-—--—



~~~~~~~~~~~~~~~

--— - :—-
~

:--- -

~~~~~~~~~~~~~

-

~

-

~~~

—-

~~~~~~~~~~

- 

~~~~~~~~~~~J : T~~~
.

B

7. Applications of the Subalgorithm.

The subalgorithm determines in 0(n) steps whether or not G has

a bandwidth-2 layout beginning with ab ; by trying all possible a and

b we have an 0(n 3) algorithm for deciding whether or not Bandwi dth(G) < 2

This can be improved to an 0(n2) algorithm, by using the sub algorithm

to decide whether or not G has a complete layout that extends xy_ a , for

some vertex a and some (nonexistent) dummy vertices x and y • However, we

really want an 0(n) algorithm, so it is necessary to be a little more careful.

We observed at the beginning of Section 2 that G may be assumed

to contain a vertex v of degree > 3 ; suppose v — a , v — b , and

v — c • Then any layout for G must contain one of the six substrings

vab , vba , vac , yea , vbc , vcb

or their left-right reflections, since two of [a,b,c) must appear on the

same side of v • To test Bandwidth(G) < 2 in linear time, it therefore

suffices to have a linear-time algorithm that determines whether or not a

conrplete layout exists containing a given substring of three vertices.

(Recall that a “complete layout ” always has bandwidth 2 according to

the definition in Section 2.)

Let us f irst develop an algorithm which decides in 0(n) steps

whether or not there is a complete layout for a gi’-en connected graph G

containing a given substring abcd of length 4 :

Step 1. Stop with failure if a — d

Step 2. Let be the graph obtained from G by deleting all

edges among [a,b,c,dl . If there is a path in G0
from

a or b to c or d , stop with failure. (This path

cannot possibly be incorporated into a complete layout

containing abcd , since it cannot get to the right of b .)

Step 3. Let the vertices of V\ [a,b, c, d.J be partitioned into two

subsets

V1 = (V a path exists in from v to a or b) ,

- V2 = (v a path exists in from v to c or d) .

(By step 2, V1 and V2 are disjoint. Furthermore

V = (a, b, c, d} U V1 U V2 , since G was connected.) Let

-- - - ,--• - - - -

2~
_ _ _

1~1 i I IT1I~~~~~ ~~~~~~~~~

be G3 restricted to V1U [a ,b l , and let

be G0
restricted to V2U [c,d} .

Use the subalgorithm

to find a layout p1 for Gi
beginning with ba

and also to find a layout p
2

for G2 beginning with cd

If either attempt fails, stop with failure; otherwise

stop with success, since ~p~cp2 is a complete layout

for G as required. ~

Now to solve the similar problem given a substring abc of length ~~~,

we consider two cases:

• (i) There is at least one vertex d ~ a,c such that s —- d . Then

the complete layout must contain either ahcd or dabc , ~xnd w~
use the previous algorithm to try both cases.

(ii) There is no vertex d ~ a,c such that b — - ~ :c-z~ ~~~~
- C - ~i. Use

an algorithm analogous to the one above : Let G0
be -1

all edges among (a ,b , c} and stop if there is a ~ a t : • I n a

to C in G0
. Otherwise partition V \ -[a , b , c~ in to i l

sets V1 and V2 , where V1
contains the 1~~rT1~~ , r~ ’~c :.x --

from a and V2 those reachable from c . ki:-~’ comj 1~~ J a~

containing the substring abc must be composed ~~
-
~ ru~~~s - - ~ e

layout for G1 ending with ab and a complete la~ou~ for ~~~

beginning with bc

it is also possible to construct a linear-time algorithm that

decides whether or not a complete layout exists containing a given

substring ab of length 2 ; details are left to the reader.

- — — — ~
L _ _

~ - -

~~~. Tree Bandwidth is NP—con jletc.

in this section we shall prove that the gen -r:~ j roblem I )V  -
~ ~rm• 11j ~~i I

T

• - 

the bandwidth of a graph is NP-complete; that is, any problem in the large

class NP can be transformed into the problem of determining whether or

not the bandwidth of some graph is less than some integer k , with at most

a polynomial increase in the size of the problem specification. (See [25]

and [2, Chapter 10] for surveys of NP-complete problems.) This rarticular

result was first obtained by C. H. Papadimitr icu [28]; we shall prove it

in a sharper form, by severely restricting the form of G

Theorem . The following 1roblem is NP-complete: Given an integer k , and

given a graph G whi ch is a t’ree tr -e with no vertices of degree -> 3

Bandwidth (G) k

r , f l~~ . ‘ihe r-r Ll -;n o~ 1:1 ernl jili r~~ w h - l  h r  or n i .  1~:rndwi dLh (c ) k ,
Ic and an arbitrary gr~j-h ~ , i s  el -ar Ly in  NP • W -  shall c-oic~ i t -e

pr oof by showing that  the “-i-partition problem,” which is lmown to be

NP-complete [1- , 
~~~
. 120], can be polynomially transformed into the restricted

bandwidth problem stated in the theorem.

Given a sequence of 3n integers ~~~~~~~~~~~~~~~~~ , where

a1+ a 2
-~- •.. + a

3 = flA and A/4 a~ < A/2 for each i , the ~-~ art tian

problem asks whether or not there is a way to partition the integers

f 1,2, . . .,3n } into disjoint triples T1, . ..,T~ so that ~ [a.
j € T~) = A

for 1 < I < n . In other words it is a special bin-packing problem,

where we are to take 3n objects of integer sizes ~~~~~~~~~~~~~~~ and

pack them into n boxes of size A whenever possible. The condition

A/b < a~ C A/2 means th at each box in any such packing must contain

•
- exactly three objects.

I
’ Given the specification of a 3-partition problem, our job is to corst-ruct

an integer k and a free tree G whose vertices all have degree K 3 ,
such that there is a 3-partition if and only if Bandwidth(G) -

~~ Ic . Frum

4he proof in [14 1 it suffices to do this with a tree whose si:~e is at most

a polynomial in n and A , since the 3-partition problem is NI-comp lete

-•~ven when the na~~itud s of all 3n numbers are l~~1Lrs1e~ a l l y - by

(su ~ tab iy large) i olynem.~al function of n . (See [15] for a discussion

of ~hi - “strong NI--completeness” property.)

ti II

cr~
) ci)

~~~~~~~~~~~~~~~~~~~~~

H



— -—- ..- ~~~~
—--. -~~~

The free trees we shall construct bear more res~~sh1~~r - e  tI~ p ( i  - t~Y c

hydrozoa of the order Siphonophora than to actual trees, so we shall :i:1 - t

it convenient to use terms from marine biology rather than botany. Our

construction involves parameters m1,...,m30 , 
d , anu Ic which we shall

specify later after the properties we need f o r  the proof have been
* explained.

The graphs of interest to use all have the general structure shc’..y~ in

Figure 3. There is a long stem, a path in which every d-th vertex has a

special name; the respective names of these special stem vertaccs are

b0 h1 b1 p1 
b~ f1 b3 

p2 b4 f2 p~ b2 f b2~÷1 h2 
b 2fl÷ 2 h7

from left to right. It follows that the stem contains bdn + ~d+ 1 vertices

in all. There are also 3n long tentacles attached 4 o special vei-t~ c~ s

t1, .. .,t3~ ; the i-th tentacle consists of a long filament followed by 2ir- ,

nematocysts as shown in Figure 4. If we break off each tentacle just

below the node t~ , ar-id if we remove the boundary nodes b0, b1, . . ., b
2+3

the remaining graph consists of 2n+3 connected pieces cafled polyps,

named respectively

H1 P1 
F1 P2 

F
2 

... I~ F 112 H3

from left to right. Note that the vertices t1,...,
t
3~ 

all belong to the

polyp called 112 , the animal’s “second head”.

2m . vertices
4dn vertices

- - t i

t. filament nematocysts

Figure 4. General form of the i-tb tenta-le . 

-~~~~~~ - - - - - - ---~~~~~~~~ -- -~~~-~~~~ - - ~~~-- - - --~~-- -~ - - - - - - - - --~~~~~~ - 



,~~
- have rioted that the -ecial v - - r t ~ ccc , h , b , .. .,b .~ ar’s 1 1

sei :~ra~- ’d by distance d ; our construction will also have the property

that -ver y node of a polyp H~ , P1 , or F1 is distance K d from it:

“central” node h. , , or
-~OW we shall impose further eoflctrri~r~ts on the construction, so th0t

it w~l~ not be easy to make layout s of bandwidth k . Ii. the first i lase,

we will require each o: the heads H1 to contain exactly 2dk-I verUces.

Th i s  means that there are exactly ~‘lk vertices ~ h . ~t di stance < s

:~~- - oI  h. (.-ince each h OLI touches two bound~~j ii ooes b. , so it is
1

!I IT -: ’ t r7 t lay thes -  v-:r~~i e - -: out in u (h a wa ,’ th-1~ ~h -  dk o’ -:t r ~~ L
1-s-at ;- - m e  on - a ch ci ~t~- of h. ai- occupied r i e ly tI)( el -

~~~~ i t

a~ d i t tr- I~~~~- d or 1:: i t t ih~- ~raT-h . in particular, t c f l ~~ i~ r t h - 1- a ,~~ I.

of H i , art ri sur e W . I t I O i t - lco~s 01 ~rmer -a1it-,- that v~ rL :-: U
1

e rr: I

the righ t of h1 ; tb -n all of the other joiy~ must -s- I - an t - ti .c r p r t

ot ill in t i - la:uut, since ther e is no way for any of th- .i r ver t l (0 5 t o

g- -t to the loft of h1 w i - t h o r t maki ng the bandwidth a k • A similar

argument aJT lies to the third head I~i3 ,
whi ch ther e fore aust a~~ ear

(together somehow with b2~~ 7) at th - octreme right of the layout . M.i

of th~ other j-oly~ s, and all of the t ent acles , mu st ai~ ear setwccn !f
1

and II.,

~~
- -
~ shall or r amtce fib r ig: so that t i m e tot al nurber of ‘;ert~ i e : in the

graph e x a t ly (2n+ 3) (2dk)+ l . Thi s mean : that t~ s i tuat i on wil l be
v - r i “t i ~ht” : in -r - am - ~~~~ 1) (2rl k) —l ver t ices whi ~~!i must ~ ear it tb -

I a~jout betwrerr b1 and h~c f u , but vort i c c 1) 1 mJflo I c
‘ TI ”?

are ~cj. ‘I stance

(: r m f l) (2 d) Crom each other in the grap h , so we must conclude that tho stem
!- - t w - : :ii b1 an’! b2~~ 2 is stretched t ight ly. In other words , two adjacent
nodes in this ; en ion of the stem must be placed k positions apart .
(i t t o ’ s not follow that the stem from b0 to h1 or from 11

3
to b2 5

is st retched ; U 0 might even appear to the right of h1 . But all we
ar - - :- i i m ~ ~1 and 1~13

for is to confine the other nodes and th er e fo re to

assign a rigid structure to the interior part s of the layout.)
f ince the i- tr ’m is stretched tightly, a~d since the polyps contain no Fr

nodes at d istance -
> d from their central node , the layout must now afl ear

-as a sequence of regions which we may represent as follows:

LA

- ~~~~~ ~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~

H~ b1 Pj b0 F1 b3 P~ b4 F~ ... Pr-~ b2n F1~ bm4 1 H~ b2~ ÷2 H~

ll e re H~ is a layout of , H~ is a layout of H~ , 1-I~ i s

a layout of H
3
U [b2÷~) and (p : , F~) are respectively layouts of

(p . , F .) plus portions of the tentacles which just manage to fit. Each

of the region s P~ , F~ includes exactly 2dk-l vertices of the layout.

The reader should stop at this point to review the construction before

going on.

If we choose the sizes of P~ , F1 carefully it will be diff icult

to place the t ent acles . Let us say that

F. cont ains exactly 2 dk - l - 6 d i vertices ,

P. contain s exactly 2dk - 1 - c - l8di + l2cl vertices ,

so that

contains exactly ~-di tentacle vertices,

and P~ contains exactly c + i8di - l2d tent acle vertices,

where c is a constant to be determined later. Note that the tentacles

are all connected to 112 ,
so they have to emanate from near the right end

of the layout, passing through F~ before coining to 1~ . If

together contain portions of at least r
~

different tentacles then

must contain at least 2dr . vertices of these tentacles, since a path

-
-

-

cannot cross F~ without using up at least 2d positions; hence 2dr. < di

i .e.,

r1 < 3 1
1..’ Furthermore if r . = 51 each tentacle must use exactly 2d poc it~ ur : of

F.! , so there can be no nematocysts in F~ in this case .

By choosing the values of c,ml,...,m3n
we will be able to guarantee

that exactly 31 tentacles come through F~ . Consi der first P~ , which

r ust contain c ~
-
~~ tentacle vertices; these must come fran at most three

di fferent tentacles because of the constraint on r1
. If we choose each

a: a function of tb given numbers a. so that the number of nodes in

two tentacles is always less than c+ c d , then P~ must contain vertices

run exactly thr~- c- di 1t”rcrit tentacles, and it must include all of their

27

nematocysts too because of the constraint on F~ • Furthermore we will

be able to argue in the same way that P~ must now include all the

nematocysts of three other tentacles because of the constraint on F~
and so on.

In order to make this argument go through properly we will want to

define things so that the three tentacles whose nematocysts appear in

have their filaments “pulled completely through” the succeeding regions,
with exactly 2d vertices of their filaments appearing in each of

F
~~

, I~i+l~
• . . , P~~, F’ . It turns out that we can do this by making each

a multiple of 6dn , and requiring that a1 + a~ + a~ = A if and only

if 2(m1+ m ~~+ m ,) = c . Let us set

m1 = 6dna1 , c = l 2dnA ;

we shall prove that a layout of bandwidth k implies the existence of a

3-partition :

Lemma. For 1 < i (n , regi on P~ contain s all of the nematocyst s from
— — 1

exactly three t ent acles, namely the tentacles connected to t. where j

is in some triple T1 , and ~ [a~ j € T1) = A . Furthermore P~ also

contains as much as possible of the filaments from these tentacles, i.e.,

each tentacle in T1 has only 2d. vertices in each of

, P~÷1, . . . , P~~, F~ .

- , Proof. By induction on I , we know that F and P~ each contain
1

3(i—l)(2d) filament nodes from tentacles whose nematocysts appear in

Pj ... P~~~ . That leaves 6d enrpty positions in F~ and 12dnA + l2di - 6d

in 1! • Now F! must contain vertices from at least three tentacles,

• since two tentacles have at most 8dn+2(m .+m 2) ~
8dn +~~~dn(a~ +a,)

< 8dn + l2dn(A-1) = l2dnA - 4dn vertices altogether.

Hence P~ has vertices from exactly three tentacles, def ined by some

triple T. C [1,2,...,3n) , and it includes all of their nematocyst s
because F~

has room for only 6d more vertices from all three tentacles.

Let ~ [a~ I j c T 1} = a ; then the l2dnA +]2di - ’d available positions

in F! are taken up by l2dna nematocysts and some~there between 0 and

3(4dn- (2n -2i+l)(2d)) = l2di- (d filament nodes. It follows that ~x = A

~T1~~~~’ ~~~~~~~~~~ ~

and exactly l2di 6d filament nodes are present . ~

The lemma proves that a b andwidth-k layout for a graph of this kind

necessarily leads to a valid 3-partition. To complete the 1-roof

of the theorem, we must define the graphs so that existence of a

3-partition is sufficient to imply the existence of a layout with bandwidth

k . This means in particular that we will have to choose d and Ic

• appropriately. Furthermore the graphs must be constructible by an algorithms

whose running time is bounded by a polynomial in n and A

In the first place we want to choose k large enough that

contains at least 2d-l vertices, hence we require

k > 6 r iA + 9 n - 5

For convenience we let Ic be the smallest power of 2 satisfying this

condition, and we write

k = 2 1
.

Finally we choose

d = 1k

From these parameters k and d we can construct G by explaining
how to construct each polyp. The head polyps H~

are formed by the

bandwi dth-2 1 layout indicated in Figure 5 for I = 3 (although I will

never be this small). A periodic pattern begins to repeat after the

I-th stem node to the right of h~
: the j -th node preceding a stein node

4 branches to the (2j) -th and (2j+l) -st nodes preceding the next stem

node, for 0 K j < 2
1_i

• Before thi s pattern i s established, we have
-
~~~~~ (l,t’, 1~,..., 21 2 ) • the respective limits on j  . Arm additional “thread

branch ” goes o~m 1 of h. to fill up the remaining

(2
~ -l) + (2 1-n)÷ ... + (2 1 _ 2 ~~

1) = I k - 2 1+1 = d - k + 1 holes near the

center. To the left of h1 we use essentially the same idea in mirror

image~ thus it is clear that no vertex is at distance greater than d from
the center node. The special nodes t1,...,t31~ in H~ are t aken to to

the leftmost 3ri nodes in its layout .

i’
,. i

29



1~~~ 
_ _ _ _ _ _

1 first  stem node thread branch

Figure 5. Layout of a head polyp H. in the innnediate viciniLy

of its center node h.
:1

A similar procedure is used to construct the other polyps P~ and

F1 . In each case we wish to remove 2dx nodes from a full head polyp,

for some integer x , and we do this by removing x nodes between each

pair of adjacent stem nodes. The x nodes immediately to the right of

each stem node in Figure 5 are simply deleted from the graph, together wi th

all edges touching them, and the “thread branch” is reconnected for the

remaining nodes; again the mirror image of this pattern is used to the left 01’

the center vertex, and we clearly have a tree. It is easy to see that tire

resulting polyp has a layout of  length 2dk-1 in which the x posi ti on:

j ust i -u  the left 01’ each stem node are empty. ( simply shift  all non-stem

vertices which lie to the right of the center vertex exactly x places to

• the left.) These x slot s form x parallel “channels” through which
filament s can pass.

Now it is not difficult  to see how to embed the tentacles into these

polyp layouts whenever a 3-partition is given. For example, we can place

filaments for the three tentacles specified by T1 
into the rightmost

three channels of ~~~~~~~~~~~~~~~~~~ . Now it is easy to make the remaining

neniatocyst and filament nodes fit into the remaining spaces in P1 
without-

: 1  

_ _ _ _ _ _ _ _ _  _ _



- 1

exceeding bandwidth k ; further details are left to the reader . It is

- - 

possible to link up any channel in F~ with any t~ , since 1~ > Cn . 0

I



~~IT~i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _

9. Directed Bandwidth.

Analogous problems can be studied when G is an acyclic directed

graph, where we require its layout to be a topological sorting of the

vertices; in other words, we stipulate that f(u) < f(v) whenever

u -. v in the graph, and we ask for the minimum bandwidth subject to this

constraint.

The algorithm in Sections 2 through 7 above can readily be modified

to test for “directed bandwidth 2 .“ In fact, the situation becomes so

much simpler that it is tempting to try for directed bandwidth 3 in

polynomial time.

The NP-completeness construction in Section 8 can be modified in a
straightforward way to obtain an analogous result.

Theorem. The following problem is NP-complete: Given an integer Ic

and given a directed graph which is an oriented tree having no vertices

of in-degree > 2 , is its directed bandwidth < k ?

(Sach vertex of an oriented tree has out-degree K 1 , and there are no

cycles.)

The analogous problem of minimizing ~ (f(v) - f(u)) over all topological

sortings of a general acyclic directed graph has recently been proved

NP-complete by E. L. Lawler [26]; on the other hand Adolphscn and Hu [1]

have resolved this problem in polynomial time when the directed graph is an

or-i (rnt.( d tree, even when the arcs have been ass:i~~ied arbitrary weights.

ih~’ :Lhov - theorem ind:i cates that the bandw:i dth i ‘roblerri i somewimal IOLrIIer

Lb i oj ‘L:Lmal ordering problem, il l  1-h e di rected a; well as tire

u i i d : i m -~cted case.

V

~
— V

32



~~~~~~~~~~ ~T1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

10. Some ~~en Problems.

The following related questions are still waiting for an answer:

(a) Is the problem “Bandwidth(G) <3 “ NP-complete, given an arbitrary

graph (or perhaps a tree) 0

(b) Is there a polynomial time algorithm to enumerate the number of

distinct bandwidth-2 layouts of a given graph G ?

(c) For which exponents m is the problem “Some layout of G satisfies

~ jjf (u) - f (v) (
fl

; u — v in G} < k “ NP-complete, when 0 is a free

tree?

(d) What is the expected minimum bandwidth, for random graphs on ri

vertices and m edges , as n and m -. ~~

Question (b) is of potential interest because there seems to be a

vague connection between efficient algorithms for enumeration and efficient

algorithms for testing existence . For example, there is- a determinant

formula for evaluating the number of spanning trees of a graph , and there

are efficient algorithms for testing connectednes:. The problems of

enumerating the number of hamilton i an paths of a graph, or the number of

ways to satisfy a given ~et of clauses, etc., do not seem to be in NP;
tj mer o most likely are polynomial-time reducibilities between such rroblcr~:,
hut such transformations remain to be investigated. In the sase of

baridwidth-2 layouts for a graph, there is a linear time algori thm for —

• existence, yet no apparently “nice ” characterization. So this is a

candidate Problem in which enumeration might be definitely more di ~~~
than existence.

Question (c) is suggested by the observat ion that t;~e stato.~ i robleS. is

solvable in polynomial time for m 1 [31], but as m increase: the

b- ’ - ~t layouts are eventually those with minimum bandwidth .

All four problems can be cons i dered also for the case of i ir ecte.I
bandwidth.

Another int€ -r e ;-ting ~ue~ ti c-~i i s to di seovor how far 1r~ m o~ t rain tr ie

various heuristic method ;- for bandwidth reduction an he; s t - c the rcf~ 5 - 0 1 5 0 .

below for several :iq-roache: that have been 1-r o)-o : eu .

33
-- ~~~

_ _ _ _ _ _ _ ~TI 1TT~

References

[1] D. Adolphson and T. C. Hu, “Optimal linear ordering, ” SIAN J.

Appl. Math. 25 (1973), 14 - 03_ 1~23.
[2] A. V. Aho, J. E. Hopcroft , and. J. D. Uliman, The Design and Analysis

of Computer Algorithms, (Reading, Mass.: Addison-Wesley, l97~+) ,
x + l ~-70 pp .

[3] F. A. AJcynz and f . Tuku, “An automatic node-relabelling scheme for

bandwidth minimization of stiffness matrices,” Amer. Inst. of Aero.

and Astro. Journal 6 (1968), 728-730.

RI G. G. Aiway and D. W. Martin, “An algorithm for reducing the baudwi dtb
of a matrix of’ syrr~netrical configuration,” Coro- . J. 8 (i)~ 5 ~~, f~~~, - 2 ’ f - .

I 5 1. Ar~aiy, L. ~s’ ida, and W. I. ~TtW th , “An i mpruvt - -1 . rutbo t tor - i d s - I~
-

Lhc band.wi i.h u sl arse syrsnct~r~r matr:i C’ .- : , “ ~- re- . I FIl - (‘On0-r- -~~~

(North-Holland Fublishing Company , 1~J(2), i~. I4~ - L 50.

[6] J. Boistad, 0. Leif , A. Lindeman, and H. Ka~-er , “An empirical

investigation of reordering and dat a management fir finite elerac.t

systems of equations, ” Argonne report ANLSO5 - - , fertemb er l°’7~ , 50 ii-.

[7] K. Y. Chen, “Minimizing the bandwidth of sparse sy~mnetric matr ices , - ,

Computing 11 (1973), 27-30, 103-110.

[8] V. ~hvát al, “ A remark on a problem of Harary, ” C:echoclovak ~-~ath. .~~~

20 (1970), 109-111.

[9] Jarmila Chvdt alová, “Optimal labelling of a proth;ct of two i

Di screte Math. 11 (1975), 21~9_ 253.

1 101 .J. ~hvátalov~, A. K. Dewdney, N. ~: . Gibbs, and h. H. Kor f1ra~ e, “I h e

bandwidth J rn t len I l ur graphs , a collect i on ~ L r i - -ou t resi~I I : . - ,
h o t a r b

report no. ~~~~ Dept. of Computer Science, Univ. i f Western ;~~tar~ ci

(London, (~~tari o, Canada, 1975).
[11] i-i . Cuthill and J. ~1cKee, “Reducing the bandwidth of s1-.ir :c :y~ retr~c

s r i - s- c , ” I roc. ACM National Conferenc e 2~ (19- ’
~9), 157-172.

[12] Richard A. DeMillo, Stanley C. Elsenstat, si-id Richard 0. ~0
“Preserving average proximity in arrays,” Dept. of Computer 0c~ ’:r;:c- ,

Yale University, TR-CS-7 3~~ (March 1976), 10 pp.
[1’-] 1). R. Fulkerson and 0. A. Gross, “Incidence matrices and interval

graph s, ” Pacific J. Math. 15 (1965), 835-855. [Generalized bandwidth-i

problem for hypergraphs. I

_ _ _ _ _ _ _ _ _ _ _ _ _ _

324 4
_ _ _ _ _ _ _ --- - - -~~~~ - - - - -~~ -

-

[1)4] N . H. Carey and 1). 3. Johnson, “Complexity rosulI-~- ‘or - mult.~ -Sec - -s - C I

scheduling wider resource constraints, ” ClA M 1. ‘orn~ uL~~~ h (J ~s
3 - T ~’-I ~l1.

[15] N . R. Carey and I). S. Johnson, “‘Strong’ NP-completeness result::

Motivation, examples and implications, ” submitted for l-sLlic; t .I uo .

[1- ’] 4. H. Carey, D. C . John son, and Ray-i Sethi , “The complexity of f1c-w~d , -o~
and job:hor- scheduling, ” Mathematics of Operati ons Research 1 (i-:~7 - ,

117-iCy.

[17] T-) . H. Carey, . C . John son, and L. Stockmcyer, “Come simi.liiied

i J-cemj -iete graph problems, ” Theoretical Computer Ccier~ce 1 (l’~~- -

~,

Il- I J. Alan 0 - - or r ~c- , “ Computer implementation of Us iN r i lt e elemec t . - :_ , ‘

• . r j . ~ :, Computer Cci once Departmen t, Ct ant i-d ~ni’~’c-rsi 7,

Mar -h 1 r11, 220

1 1 1 fl ’~~~~ ~. Gibbs and Willi am 0. Poole Jr., “Tridi agonalizati .ci y

ermut-ati n-s, “ Corns. ACM 20 (iy7 14), 2 D — C h

[20] -.. L. Graham, “ On primitive graph s and optimal vcrt-:r assigros’-c~ s,

inn. N. Y. Ac ad. Cci. 175 (1970), 170-186.

[211 1. i- - . Orson:, “Algorithm for matrix bandwidth reduction, ’ - . of t :~
Ct r o.-L;ra l Di v., Proc. Amer. Soc. Civil ~~g. 9~ (19 72) , 2C3- it.

[27] L. ii. Hal -i .~r, “~)ni t ima l assi~~ments of numbers to vertices, ” J. Soc.

n-lust - . Aj~~l. Math. 12 (l9 ’Tb), 131—135.

L ’J L. H. flai-j cr , “ Optimal nuniberings and isoperimetric prJt-len: on Cr 11 dl: , ”

. 1 • ‘or, I . Crc ’ rev 1 (1 ~ -1 , 385 —303 .
21 j 1 . 1 . 1 . - n- ~-r , “A iwcessary cciid . t ion on minimal cub e nunber i i~~~~~ . ,

- ,

1. A~j i . I ‘rob • L ft ~ - - (), 397-h) L .

I 751 - : . M. Ka rj , “ hciWi~ bility among combin J- n r i i i i-~~U.1 0 5 5 , ” in Cull lo-~J t

) f Computer Computation s, ciJ. . b~ - H. C. Miller and 0. W. Thatcher
*

(N w York: Plenum , 1972), 85-1014.

L i E. L. I~ wler, “ Sequencing job s to minimize total weigh ted cor rp i e t iuo

time :‘jb~iect t o precedence constraint:, ” s ubmitt ed for publication.

‘7] h. J. Lipton, C. C. -isenstat , and. h . A. 7ciMilic , “ Op-ace and. time

hierarchic: Icr cl-is-ce: of’ c.,n t,-rc- 1 st ructur’-s and data st-rust ore:.

J. uCM 23 (19 7 -) , , o-o —~-~. [;enerraj:e b-c’oi~ iJth problem oi~
’ embedding

one grap h in another.]

TTT Iii ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

[28] Christos H. Papadirnitriou, “The NP-completeness of the bonuwi dth

minirn i.: ,aL,ion problem, ” Computing 10 (197(), 2 (3-770 .

[70 1 N . Hosen , “M a t r ix 1 :rndwi dth minimisation, “ i roe . PiCM Nat i on rd

Con ler nc -c -
~ (1o~ 8), 5y5 -‘0)5.

I 30] A. L. Rosenberg, “Preserving proximit~i in ar r ays, ” SIAM J. (8omj’scLir a’~

‘4 (1975), ‘414~3-h7Q .

[31] Yossi Shiloach , “Optimal placement problems,” Ph.D. Thesis , Feinberg

Graduate School, Weizmann Institute (Rehovot, Israel, 1975).

[32] Paul Tiing Henri Wang, “Bandwidth minimization, reducibility

decomposition, and triangularizati-on of’ sparse matrices, ” Computer

a and Information Science Research Center, Ohio Otat e Univer:it:1,

report OSU-CISRC-TR-73-.5 (September 1973), 162 pp.

‘a

a-

-
~~ - - -

